BAPI implementation for ELZET80 IPC-BIT900
PC plug-in boards Under Linux environment

Sergei B. Khvatov
Saint-Petersburg, Russia

April 23, 2002

Abstract

This document describes BAPI (BITBUS Application Programmer Interface)
implementation for ELZET80 IPC-BIT900 family PC plug-in boards under
Linux (with kernel version > 2.4.0) environment

Contents

1 BAPI library 1
1.1 How touse thelibrary 1

2 Driver of IPC BIT900 2
2.1 Driver APT 2
2.1.1 read() and write()o 2

212 doctl() ... 3

2.2 using /proc filesystem 3
2.3 Invoking of module 4

3 Installation 4
3.1 Driver installation 5
3.1.1 Compiling driver oL 5

3.2 Imstallation of library 6
33 Testprogram 6

1 BAPI library

The library provides BITBUS application programmers interface (BAPI), de-
scribed in [1] with the following differences:

e BirbusOpenSlave() is not implemented. As the IPC-BIT900 boards can
not be used as a slave, this function always returns BAPI_ERR_NO_BOARD

The library supports multi-tasking environment (in fact, this is provided
with a kernel driver). It also multi-thread-safe.

1.1 How to use the library

To use the library you must include the header file named bapi.h in your source
file

#include <bapi.h>

Note the lower case in file name.

After that you can put BAPI calls in your code, e.g.

BBHANDLE bh;

BitbusMsg msg;
int ret;

bh = BitbusOpenMaster ("My App", "BBUSO", NULL);
if (bh < 0) {
// process error here

// prepare message here
ret = BitbusSendMsg (bh, &msg);
// check errors here

ret = BitbusWaitMsg (bh, &msg, -1);
// check errors here, process received message

(void) BitbusClose (bh);
Then compile your program and link it against libbapi:
cc -o prog prog.c —lbapi

You may need to add additional options if the header file and the library a
installed in unusual places.

2 Driver of IPC-BIT900

The driver works with ELZET80 IPC—BIT900 family of PC plug-in boards,
which consists of IPC-BIT900A for ISA bus, IPC-BIT900<104 for PC104
ISA bus and IPC-BIT900<PCI for PCI bus.

It supports all functions which are necessary to use the boards as BITBUS-
Master.

The driver can drive up to 8 devices in any combination and permit up to
16 independent tasks per device (i.e. each device may be opened up to 16 times
simultaneously)

2.1 Driver API
The driver use the boards as character devices. It supports open(), close(),

read(), write(), poll() and ioctl(). But it does mot supports readv() and
writev().

open() operates as expected:

ret = open(name, mode) ;

where:

name is a file of a device. Usual names are /dev/bit900-N, where N is a device
(board) number (N =0...7).

mode is a usual open mode, e.g. O_.RDWR|O_.NONBLOCK. Not all flags
have a sense, in particular, there is no sense to open device only for reading
or for writing only (with lag O_.RDONLY or O.-WRONLY'), but driver
permit you to do so if you want.

return value is a non-negative file descriptor or —1 in case of error

2.1.1 read() and write()

read() and write() are bit tricky. The driver attempts to exchange exactly one
message per operation.

for read() driver fill the buffer with complete message (mCAT header fol-
lowed by a data). If supplied buffer is shorter then received message (but not
shorter when header), the message will be silently truncated, so it’s better to
have a buffer which is not shorter then maximum message length (M CAT_MSG_LEN,
512 bytes).

for write() driver expect complete message in a buffer. It ignores some fields
in header: len (it takes length from the corresponding parameter of write()),
src and net (they are taken from internal data of driver).

if the buffer length is greater then maximum length of message, only MCAT_MSG_LEN
bytes will be sent.

Of course, both operations return number of transferred bytes.

readv() and writev() are not supported. In fact, LINUX kernel replace
them with a series of read() and write() respectively. Since read() and write()
exchange only whole messages, you got not what you expected.

2.1.2 doctl()

The following IOCTL’s are defined:

IOCTL Arguments description

BIT900TASK none Returns a number of current task
(0...15)

BIT900.OQUEUE none Returns a number of packets in
output queue

BIT900IQUEUE none Returns a number of packets in
input queue for current task

BIT900_IQUEUES none Returns a total number of packets

in input queues for all tasks (for
current device)

BIT900.SETAPPNAME bit900buf ft Set name for current application

BIT900.GETAPPNAME bit900_buf ft Get name of current application.
Return value is a length of an ac-
tual name.

BIT900.GETAPPNAMES bit900bufft Get list of newline-separated
names of all applications using
this device.

All them returns non-negative value in case of success

2.2 using /proc file system

The driver registers a read-only entry in /proc file system. It’s name is driver/bit900
(usually /proc/driver/bit900). The contents of this file is look like this:

dev0: hw=BITPCI hwrev=22 surev=2.0
base=0xd400 irg=11
status=0x24 (RX_EMPTY,TX_EMPTY)
1status=0x80 ()
control=0x8 hwver=0x11
sent=0 recvd=0
int=0 err=0 drop=0 trunc=0

For each installed device it contains the following entries:

name value

hw board type (from identification string). Possible values are
BIT900 and BITPCI

hwrev hardware revision (from identification string)

swrev mCAT software revision

base base I/O address

irq IRQ

status current status (register 2 of device)

Istatus latched status (register 3 of device)

control control

hwver hardware version information (from register 5)

sent counter of sent messages

recod counter of received messages

int interrupt counter

err error counter

drop counter of dropped incoming messages

trunc counter of truncated incoming messages

2.3 Invoking of module

Driver must be loaded before using, e.g. with modprobe You can (and for ISA
card you must) supply some parameters to module:

parameter type default value description

bit900io array of int none base I/O addresses of ISA cards

bit900irq array of int none IRQ of ISA cards (set to —1 to let
module to choose IRQ automati-
cally)

LINUX kernel (and BIOS) finds and correctly initializes all PCI cards au-
tomatically, but for each ISA card you must provide to driver I/O address and
IRQ with above parameters, e.g.:

modprobe ipc-bit900 bit900_io=0x230,0x238 bit900_irq=9,11

You also must choose correct I/O address and set it in a board (see board
manual).

While the driver can choose IRQ by it’s own, it is unsafe, as IRQ may conflict
with IRQ of an unused device. So it’s better to provide IRQ explicitly. The
latter may be one of (3,5,7,9,10,11,12,15)

3 Installation

A kernel driver and a library have to be loaded.

All described actions should be executed as root.

ot

3.1 Driver installation
First the bad news:

Linux kernel version must be 2.4.0 or greater. This mean you may need
to upgrade your kernel.

Binary code of driver module depends on kernel. You can not use the
same module for different kernel versions or even for kernels of same ver-
sion but with different features. So you will probably need to recompile
the driver

The driver made as separate module. This means to compile it you don’t
need to patch or recompile your kernel.

But you still need to have a proper kernel tree. This means the first you
need, is the original tree in which you compiled your version kernel. But a
freshly unpacked kernel will not cut it, because it miss some files that are needed.
make *config dep creates some files that are needed. And even then, you will
run into trouble, because you may not have selected the exact same configuration
variables.

Plain advise: if you do not have your original kernel tree anymore, recompile
your kernel first.

3.1.1 Compiling driver
If you have proper kernel tree you can compile and install driver.
1. Gointo driver source tree and check top-level Makefile You can see a couple
of variable there (with short description and examples):

RELEASE sets the kernel version. It used mainly to install module in
proper place. If you compile to current version, set this to ‘uname -r¢
to ask system for proper value.

KERNELDIR sets the path to kernel tree. Usual value is /usr/src/linux

2. Type make to compile module.
3. As aroot, type make install to install the module and public header file
and to create device files /dev/bit900-0 ... /dev/bit900-7.
The driver is installed. To use it you must load the module first with com-
mand modprobe
To force automatic loading of driver module you can edit file /etc/modules.conf.

Add the following lines into it:

alias char-major-242 ipc-bit900
#set parameters for ISA boards
options ipc-bit900 bit900_io=0x230,0x238 bit900_irq=9,11

The last line is need only for ISA boards.

3.2 Installation of library

not written yet...

3.3 Test program

not written yet...

References

[1] Mario Casali, Bassel Safadi, Matteo Mondada, Beggi Oskarsson, and Volker
Goller. BITBUS application programmers interface(BAPI). A BEUG re-
comendation. World Wide Web, http://www.bitbus.org/dnl/bapi.pdf, 1999.

~

